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TWO-DIMENSIONAL DYNAMIC PROCESSES IN ANISOTROPIC MEDIA * 

0. V. GOLUBEVA 

Dynamic processesinlayerswith an arbitrary mesh of the principal directions of 
anisotropy are investigated. A case corresponding to a curvilinear, homogeneous 
anisotropicmediumis studied. Solutions are given to a number of concrete problems. 

1, When the medium is anisotropic, the process is stationary and the basic dynamic law 
is linear then the equations of motion and heat transfer in the phenomena of filtration of 
liquids (D'Arcy's law) and heat conductivity (Fourier's law), have the form 

v = TVrp, Vv = 0 (1.1) 

Here v denotes, respectively, the rate of filtration and the thermal flux; cp= -(P + YZ) /p 
in the case of filtration (P is the pressure of fluid, v is acceleration due to gravity and 
~1 is the viscosity of fluid), and cp=-t in the case of heat conduction (t is temperature). 
Under the same conditions the magnetic and electric fields can be described, by virtue of the 
Maxwell's equations and the Ohm's law, by the relations 

v = r'cp, VTv=O (1.2) 

Here v denotes, respectively, the magnetic field intensity and current density and cp=--T; 

where Vis the magnetic and electric potential. In equations (1.1) and (1.2) T is a second 
rank tensor, the coefficients of which depend on the coordinates and characterize, respectiv- 
ely, the inhomogeneity, magnetic permeability and specific resistance of the medium, and its 
anisotropy. 

When the process is two-dimensional equations (1.11 have the form 

vi = kilt?q I 8x1 + ki,av / 8x2 = (~-1)' H-‘&J / 8Xj (1.3) 
i=l,j=J; i=2,j=l 

Here ri denote the Cartesian coordinates of the (z)-plane along which the process develops, 

or, onto which the process is mapped conformally in a layer distributed along a curvilinear 
surface, ui are the projections of the vector v on the zi -axis, H denotes the law of varia- 
tion in the thickness of the layer and is, generally, dependent on the coordinates /l/, and $ 
is the stream function. Equations (1.2) are analogous in the case of a two-dimensional process 

vi =z= iZ$ /'ari = (-l)'(lci,a$ / as, + kJ$ / as,) (1.4) 
i= 1: j= 2; i= 2,jzl 

Let us show the nature of the anisotropy of the medium described by tensor T, in the two- 
dimensional case. We shall regard the motion at a given point in the direction s along the 
vector v as one-dimensional and will use the coefficient k, to describe the medium in this 
direction. When the process obeys a linear law, the motion along s is described by the equat- 
ion 

u = k,(cos a& / C?Z, + cos a&p I’ &) 
(1.5) 

where cosa, and cosu2 are the direction cosines. 
Let us introduce a vector of length I/r, with the origin at a specified point and the co- - 

ordinates Xi = 1/ k,COs ai , and a tensor F with components fij such that Yq= F\-. Then we 
can write the equations (1.4) in the form 

f,lXL2 + (fl + fzd XIX, + f*J,Z = 1 (1.6) 

Since k,+m, it follows from (1.5) that ]‘k, varies with s according to an elliptical law, 
and this corresponds to the tensor type 05 the equations (1.3). Thus (1.3), and in the same 
manner (1.41, describe the dynamic processes in a medium possessing a particular type of aniso- 
tropy. Experimental confirmation of such a character of the anisotropy can be found in e.g. 
/2/. 

Let us introduce an orthogonal coordinate system pi in the (z)-plane, directed along the 
principal axes of the ellipses described by (1.6). Then using these variables, we encounter 
two cases: 1) kz = fzl = 0 or kla = kal=Ot and 2) fl~=-f~l or klz = -km 

When k,,=k,,, then the square of the arc element dS2 in the (z)-plane is given by the 
following expression in terms of the curvilinear coordinates pi : 

*Prikl.Matem.Mekhan.,44,No.l,166-171,198O 
115 



116 0. V. Golubeva 

d,P = Hl2dplz _I- H,%p,2 (1.7) 

where HI and H2 denote the Lam; coefficients. 

Equations (1.3) in these coordinates become 

L‘; = killi-'@ / i3pi =I (-l)'(H,H)-'@ 1 ap, (1.8) 
i=-I, j=2; i=2,j=1 

Here t>i denote the projectionsof t'levector u on the pi -coordinate axes, ki are the coef- 
ficients describing the medium in the directions pi, and Hi are given by (1_7).When kll=k2,, 
the coordinates pi are called the principal directions of theanisotropyof the medium, and 
equations (1.8) become referred to the principal directions. An analogous coordinate system 
was used in the problems of diffusion by filtration /3/. 

When klr= kg1 , equations (1.4) referred to the principal directions of the anisotropy of 

the medium have the form 

t)i = Hi-‘89 / 8pi = (-1)’ (kJI,H)-‘G$ / apj 
(1.9) 

i=l, j=2; i=2, j=l 

When k,,=-k,,, equations (1.3) and (1.4) written in terms of the variables pi are not 
reduced to the form (1.8) and (1.9). The principal directions of the anisotropy are, in this 

case, no longer orthogonal, therefore it is expedient to use non-orthogonal coordinates when 

writing the equations in canonical form. Let us write the equations (1.8) in the form 

biK1/K,&p / api = (-I)‘@ / (VKlK$Pj) 
K, = k,HII, / Hi, i = 1, j = 2; i = 2, j = 1 

We introduce the auxilliary variable E, which satisfy the Beltrami equations 

(/F$Tjf?kl / tlpi = (-I)’ aE, / aP1 
i=l,jZ2;i=2,j=1 

(1.10) 

The variables 5, and E, represent quasiconformal transformation of the (z)-plane into the 

(c)-plane with variables c, , and equations (1.8), (1.9) written in these variables become 
- 

a~~ // ,~si = (-I)’ 81~ / (Hl/k,k,a~j) (1.11) 

i=l,j=2; i=2,j=l 

Solutions of these equations can be written in terms of the P-analytic functions. 

Equations (1.11) represent a canonical form of the differential equations (1.2) (see e.g. 

/4/). Their physical meaning is, that the two-dimensional dynamic problem in question in an 
anisotropic medium, is reduced to a similar problem in an inhomogeneously-isotropic medium. 

2, When the anisotropy of the medium is not complicated by the inhomogeneity, its influ- 

ence on the dynamic process is described, in general, by a model with curvilinear homogeneous 

anisotropy (H= 1, ki are constants). It follows from (1.11) that the dynamicprocess can be 

studied, in this case, using the analytic functions_ 
Let us assume that the mesh of the principal directions of the anisotropy can be reduced 

to an isothermic case. This means that the curvilinear coordinates 11~ represent a real and 

an imaginary part of the analytic function f(z) which connects pi with Xi. The square of 

the arc element of the (z)-plane is written in the form 

f1S" = I? (n'pp + d&Z) (2.1) 

The Lam6 coefficients in the isothermic coordinates are HI= H,=c. We note that the non-iso- 
thermic mesh pi (see (1.7)) can be reduced to an isothermic one (see (2.1)) provided that Hi 

satisfy the conditions Hi =Ai(p,)Bi(p,) or II, = ,4 (pi, p.J Bi (pi), i = I,2 where n and f1 are arbit- 
rary functions of the corresponding coordinates. 

Under the assumptions made, equations (1.8) can be written in the form 

CV; = lC;Jyl / api = (-l)'av / a,?Jj (2.2) 
i z. 1.j = 2; 1=2,/=1 

In the (z)-plane, the above equations are written in terms of its curvilinear principal direct- 

ions of anisotropy. Let us introduce the plane of anisotropy o =pl+ ip, which is connected 
to the (z)-plane by a conformal transformation. Equations (2.2) describe, in this plane, a 
dynamic process in a medium with rectilinear anisotropy the principal directions of which co- 
incide with the coordinate axes (see e.g. /5/ ). The transformation E1= I/kxikl pl, Ep=pB, 
which represents a particular solution of (l.lO), reduces the equations (2.2) to the Cauchy- 
Riemann conditions &pt/agt = (-I)' N1 i 25, 

i=l, j= 5: i = 2. j = 1, cpl = cp. $, = 11) /vklkr (2.3) 
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3, Using the results of Sect.2, we shall solve a number of specific problems belonging 
to various areas of the two-dimensional processes in question. 

lo. Consider a plane-parallel flow under a mean section of a dam with an impermeable 
plane sill. We assume that the boundaries of the head and tail bays are continuations of 
the sill, and we choose the .x,-axis to run along these boundaries. We assume that the hori- 
zontal, water-containing stratum, is at the distance d from the rl-axis, and the principal 
directions of the soil anisotropy pi are determined by zi of the analytic function o= expnzi 
(2d). The transformation Z = 2&n o/n takes the (z)-plane into the anisotropy (o)-plane.Quasi- 
conformal transformation taking o to the (c)-plane, has the form 0 = PI + 'PI = %'fi~ 5, i- is2 

where ki denote the soil permeability along the principal directions. In the (<)-plane the 
problem reduces to that of investigating a flow along the El-axis in homogeneous soil under 
a dam with a plane sill, with the beginning and the end of the latter determined by the points 
5 = a,, b, . The vertical direction is impermeable. In the (c)-plane the problem is solved with 
the help of the complex potential /6/ 

where K is a complete elliptic integral of the first kind and 'puV qa denote the constant valu- 
es of cp along the boundaries of the head and tail bays. 

The pressure field associated with <p (zi) and the streamlines $((+& in the (z)-plane are 
determined by the complex potential w and the transformation of the (6)-plane to the(w)-and 
(2) -planes. The size of the sill in the (a)-plane is determined by its end points (a) and (b), 

and the latter are found by transforming the points <=a,,b, in the course of the passage to 
the @)-plane. 

20. Let us now consider a problem of emission of heat by a heated rectilinear pipe immers- 
ed in an unbounded medium. The heat conductivity of the medium is anisotropic, and the princi- 
pal directions pl,pI of the anisotropy are situated in the plane Z= sl+ iz,= R expai perpendic- 
ular to the axis of the pipe. 

Let the principal directions of the anisotropy represent the families of orthogonal para- 
bolas. Then Pi are linked with zi by the equations 

Let us represent 
position of the pipe 
plane is governed by 
v/k,/k,pl + ip,. Taking 
ed (z)-plane, we can 
plex potential 

TZ2 = 4P? (PI* - 4, .$ = 4PB2 (2, + I)*? 

the heated pipe in the @)-plane as a power source Q, and denote the 
axis by the point zO. In this case the passage to the anisotropy (a))- 
the transformation Z= 09, and to the (O-plane by the transformation 5= 
into account the fact that the passage from (o)to (I) yields a doubly-sheet- 
write the solution of the problem in the (c)-plane in the form of a com- 

Lu = (0 i 2n) In (52 - 512) 

where '& corresponds to the point zO. 
The temperature distribution (-_'F) and the streamlines 10 of the thermal flux in the (2) - 

plane are found from the complex potential w and the transformations of the (c)-plane to the 
(0) - and (z)-planes. 

3O. Consider the problem of distortion in the plane, rectilinear magnetic field strength 
caused by a circular inclusion of radius R,. The field has anisotropic magnetic permeability 
and the principal directions of the anisotropy lie along the non-concentric circles. We 
write the equation of these circles in the form 

[Z1 - &I / (r2 - ,+)I* + Z$ = [a+ / (9 - a")]2 
(xl - a/2)2 + (z2 - (1 ctg 0 i 2)2 = (u / (&in El))% 

Here the constant 5 is connected with R, by the relation R, = a2 / (a2 - 1) , the center of the 
inclusion is situated at the point Z= a/(a2-I); a>l, and r, 0 are parameters determining vari- 
ous curves of the principal directions of the anisotropy of the inclusion. 

Let us denote by k the magnetic permeability of the medium outside the inclusion, and by 

ni the magnetic permeability of the medium along the principal axes within the inclusion.We 
pass from the (z)-plane to the anisotropy plane o= re*pBi by means of the following conformal 
transformation: 

o=azi(z--a), 1= ao:(o - a) 
,- 

Quasiconformal transformation of the (o)-plane to the (o-plane of the form 5- r"*""exPei 
reduces the problem to that of determining, in the (O-plane, a magnetic field due to a dipole 
at the point c= (1, in a medium with a continuously homogeneous magnetic permeability k and 

1/G* outside and inside the unit circle, respectively. Applying the filtration theorem on 
a circle /l/, we can write the solution of the problem in the (:)-plane in the form 

w (5,) = l/(C1 - a) + (k - Vx&(k i- 1/G, (; - WI) 

w (Li) = 2 )/G&k + I/v*) (52 -a) 
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Here Zt and :a denote the points outside and inside the circle / ;I -: I connected with the - 
anisotropy plane also by the equations i, = m, ;, _ ,.I "all'): ,,p t)L. 

The magnetostatic potential cp and the streamlines of the magnetic field strength vector 

in the (z)-plane are obtained using the complex potentials w(&) and I"(<,), and the transform- 

ations of the (Q-plane to the (o)- and @)-planes. 

4o. Consider a plane electric field of constant current in an anisotropic conducting 

medium. We assume that the field is generated by a charged segment of strength Q, the begin- 

ning and end of which have coordinates zg and zb. Let the principal directions of the med- 

ium anisotropy be situated along ellipses and hyperbolas (with the interfocal distance equal 

to two), with the specific resistances along these curves equal to k, and k,. The solution 
of this problem has the form 

Functions q(zi) and $(Zi) determine the electric potential and current density streamlines; 1~ 

(;I) determines the unbounded electric field cf a homogeneous plane conductor, generated by a 

charged, conducting circular boundary. The subsequent transformations represent the solutions 

of a number of problems obtained according to the scheme of Sect.2 , and these solutions clarify 

the meaning of the constant R,,A,b and II,, appearing in the solution as well as their relation- 

ship with z, and T,,. 

It should be noted that, in the problems considered, cp and Q written in terms of the 

coordinates of the (o)-plane represent solutions of problems with rectilinear or radial princi- 

pal directions of anisotropy, and v,$ written in terms of the coordinates of the (Q-plane 

are solutions of the problems for homogeneously isotropic media. It should also be noted that 

the fact that the equations of dynamic processes considered above are all identical, makes it 

possible to regard every one of the above problems as a solution of the corresponding problem 

in the other region. Conformal transformations onto the curvilinear surfaces of the (z)-, (o)- 
and (:)-planes represent solutions of the corresponding problems in curved layers. 

In conclusion we note that the equation of the dynamic steady-state process with a non- 

linear dynamic law and "ellipsoidal"-type anisotropy, has the form 

If the coefficients of the tensor T are independent of u, then the tensor characterizes 

the anisotropic and inhomogeneous properties of the medium, independent of the law governing 

the dynamic process. The function f(L)) determines one or another nonlinear law of the process, 

independent of the properties of the medium. The coefficients of T dependent of v character- 

ize the properties of the medium which are dependent on the dynamics of the process, and deter- 

mine completely its nonlinearity for f(v) = 1 . 
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